martes, 30 de abril de 2013

Programas para Hacer Animaciones GIF con fotos jpg o imagenes

Hay varios buenos:
Beneton Movie Gif
http://www.benetonsoftware.com/Beneton_Movie_GIF.php


Easy GIF Animator



http://123videomagicpro-greensoftwarefullversion.webs.com/easy%20gif%20animator%205%20license%20key.zip

Para activarlo
 Como Activar
Easy Gif Animator
1. Instale el programa
2. Deshabilite Internet
3. Abra el Keygen
4. EScoger para Easy ...
5. Generate
6. Abrir Easy....
7. Boton Activate
7. Pega el serial


GiftedMotion
http://www.onyxbits.de/sites/default/files/upload_cck/node/525/giftedmotion-1.23.jar



martes, 2 de abril de 2013

e^{x} = \sum^{\infin}_{n=0} \frac{x^n}{n!} = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots\quad\text{ for all } x\! \log(1-x) = - \sum^{\infin}_{n=1} \frac{x^n}n\quad\text{ for } |x| < 1 \log(1+x) = \sum^\infin_{n=1} (-1)^{n+1}\frac{x^n}n\quad\text{ for } |x| < 1 \frac{1}{1-x} = \sum^\infin_{n=0} x^n\quad\text{ for }|x| < 1\! (1+x)^\alpha = \sum_{n=0}^\infty {\alpha \choose n} x^n\quad\text{ for all }|x| < 1 \text{ and all complex } \alpha\! {\alpha\choose n} = \prod_{k=1}^n \frac{\alpha-k+1}k = \frac{\alpha(\alpha-1)\cdots(\alpha-n+1)}{n!} \sin x = \sum^{\infty}_{n=0} \frac{(-1)^n}{(2n+1)!} x^{2n+1} = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \cdots\quad\text{ for all } x\! \cos x = \sum^{\infin}_{n=0} \frac{(-1)^n}{(2n)!} x^{2n} = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \cdots\quad\text{ for all } x\! \tan x = \sum^{\infin}_{n=1} \frac{B_{2n} (-4)^n (1-4^n)}{(2n)!} x^{2n-1} = x + \frac{x^3}{3} + \frac{2 x^5}{15} + \cdots\quad\text{ for }|x| < \frac{\pi}{2}\! \sec x = \sum^{\infin}_{n=0} \frac{(-1)^n E_{2n}}{(2n)!} x^{2n}\quad\text{ for }|x| < \frac{\pi}{2}\! \arcsin x = \sum^{\infin}_{n=0} \frac{(2n)!}{4^n (n!)^2 (2n+1)} x^{2n+1}\quad\text{ for }|x| \le 1\! \arccos x ={\pi\over 2}-\arcsin x={\pi\over 2}- \sum^{\infin}_{n=0} \frac{(2n)!}{4^n (n!)^2 (2n+1)} x^{2n+1}\quad\text{ for }|x| \le 1\! \arctan x = \sum^{\infin}_{n=0} \frac{(-1)^n}{2n+1} x^{2n+1}\quad\text{ for }|x| \le 1, x\not=\pm i\! \sinh x = \sum^{\infin}_{n=0} \frac{x^{2n+1}}{(2n+1)!} = x + \frac{x^3}{3!} + \frac{x^5}{5!} + \cdots\quad\text{ for all } x\! \cosh x = \sum^{\infin}_{n=0} \frac{x^{2n}}{(2n)!} = 1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \cdots\quad\text{ for all } x\! \tanh x = \sum^{\infin}_{n=1} \frac{B_{2n} 4^n (4^n-1)}{(2n)!} x^{2n-1} = x-\frac{1}{3}x^3+\frac{2}{15}x^5-\frac{17}{315}x^7+\cdots \quad\text{ for }|x| < \frac{\pi}{2}\! \mathrm{arcsinh} (x) = \sum^{\infin}_{n=0} \frac{(-1)^n (2n)!}{4^n (n!)^2 (2n+1)} x^{2n+1}\quad\text{ for }|x| \le 1\! \mathrm{arctanh} (x) = \sum^{\infin}_{n=0} \frac{x^{2n+1}}{2n+1} \quad\text{ for }|x| \le 1, x\not=\pm 1\!