Yo amo a Mis Hijos Alan y Dylan
martes, 30 de abril de 2013
jueves, 25 de abril de 2013
Programas para Hacer Animaciones GIF con fotos jpg o imagenes
Hay varios buenos:
Beneton Movie Gif
http://www.benetonsoftware.com/Beneton_Movie_GIF.php
Easy GIF Animator
http://123videomagicpro-greensoftwarefullversion.webs.com/easy%20gif%20animator%205%20license%20key.zip
Para activarlo
Como Activar
Easy Gif Animator
1. Instale el programa
2. Deshabilite Internet
3. Abra el Keygen
4. EScoger para Easy ...
5. Generate
6. Abrir Easy....
7. Boton Activate
7. Pega el serial
GiftedMotion
http://www.onyxbits.de/sites/default/files/upload_cck/node/525/giftedmotion-1.23.jar
Beneton Movie Gif
http://www.benetonsoftware.com/Beneton_Movie_GIF.php
Easy GIF Animator
http://123videomagicpro-greensoftwarefullversion.webs.com/easy%20gif%20animator%205%20license%20key.zip
Para activarlo
Como Activar
Easy Gif Animator
1. Instale el programa
2. Deshabilite Internet
3. Abra el Keygen
4. EScoger para Easy ...
5. Generate
6. Abrir Easy....
7. Boton Activate
7. Pega el serial
GiftedMotion
http://www.onyxbits.de/sites/default/files/upload_cck/node/525/giftedmotion-1.23.jar
martes, 2 de abril de 2013
e^{x} = \sum^{\infin}_{n=0} \frac{x^n}{n!} = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots\quad\text{ for all } x\!
\log(1-x) = - \sum^{\infin}_{n=1} \frac{x^n}n\quad\text{ for } |x| < 1
\log(1+x) = \sum^\infin_{n=1} (-1)^{n+1}\frac{x^n}n\quad\text{ for } |x| < 1
\frac{1}{1-x} = \sum^\infin_{n=0} x^n\quad\text{ for }|x| < 1\!
(1+x)^\alpha = \sum_{n=0}^\infty {\alpha \choose n} x^n\quad\text{ for all }|x| < 1 \text{ and all complex } \alpha\!
{\alpha\choose n} = \prod_{k=1}^n \frac{\alpha-k+1}k = \frac{\alpha(\alpha-1)\cdots(\alpha-n+1)}{n!}
\sin x = \sum^{\infty}_{n=0} \frac{(-1)^n}{(2n+1)!} x^{2n+1} = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \cdots\quad\text{ for all } x\!
\cos x = \sum^{\infin}_{n=0} \frac{(-1)^n}{(2n)!} x^{2n} = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \cdots\quad\text{ for all } x\!
\tan x = \sum^{\infin}_{n=1} \frac{B_{2n} (-4)^n (1-4^n)}{(2n)!} x^{2n-1} = x + \frac{x^3}{3} + \frac{2 x^5}{15} + \cdots\quad\text{ for }|x| < \frac{\pi}{2}\!
\sec x = \sum^{\infin}_{n=0} \frac{(-1)^n E_{2n}}{(2n)!} x^{2n}\quad\text{ for }|x| < \frac{\pi}{2}\!
\arcsin x = \sum^{\infin}_{n=0} \frac{(2n)!}{4^n (n!)^2 (2n+1)} x^{2n+1}\quad\text{ for }|x| \le 1\!
\arccos x ={\pi\over 2}-\arcsin x={\pi\over 2}- \sum^{\infin}_{n=0} \frac{(2n)!}{4^n (n!)^2 (2n+1)} x^{2n+1}\quad\text{ for }|x| \le 1\!
\arctan x = \sum^{\infin}_{n=0} \frac{(-1)^n}{2n+1} x^{2n+1}\quad\text{ for }|x| \le 1, x\not=\pm i\!
\sinh x = \sum^{\infin}_{n=0} \frac{x^{2n+1}}{(2n+1)!} = x + \frac{x^3}{3!} + \frac{x^5}{5!} + \cdots\quad\text{ for all } x\!
\cosh x = \sum^{\infin}_{n=0} \frac{x^{2n}}{(2n)!} = 1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \cdots\quad\text{ for all } x\!
\tanh x = \sum^{\infin}_{n=1} \frac{B_{2n} 4^n (4^n-1)}{(2n)!} x^{2n-1} = x-\frac{1}{3}x^3+\frac{2}{15}x^5-\frac{17}{315}x^7+\cdots \quad\text{ for }|x| < \frac{\pi}{2}\!
\mathrm{arcsinh} (x) = \sum^{\infin}_{n=0} \frac{(-1)^n (2n)!}{4^n (n!)^2 (2n+1)} x^{2n+1}\quad\text{ for }|x| \le 1\!
\mathrm{arctanh} (x) = \sum^{\infin}_{n=0} \frac{x^{2n+1}}{2n+1} \quad\text{ for }|x| \le 1, x\not=\pm 1\!
Suscribirse a:
Entradas (Atom)