Web API Testing Tool
Online Web API testing tool for backend developers and testers. Test your Web API by making API calls directly from your browser.
Web API Testing Tool
Online Web API testing tool for backend developers and testers. Test your Web API by making API calls directly from your browser.
Arduino Shield APC220 Bluetooth Voice Recognition Module Multifunctional Expansion Board Shield
https://leeselectronic.com/en/product/110902-apc220-bluetooth-voice-recognition-module.html
Features
4 digit 7-segment LED display module driven by two serial 74HC595’s
4 LED’s
10K potentiometer
3 x push buttons
Piezo buzzer
DS18B20 temperature sensor interface (not included)
Infrared receiver interface
Serial interface header for connection to serial modules
********************************************************************
Blinking LED
int led = 13;
void setup()
{
// initialize the digital pin as an output.
pinMode(led, OUTPUT);
}
void loop()
{
digitalWrite(led, HIGH);
delay(1000);
digitalWrite(led, LOW);
delay(1000);
}
********************************************************************
All LEDS blinking
int led1 = 13;
int led2 = 12;
int led3 = 11;
int led4 = 10;
void setup()
{
// initialize the digital pin as an output.
pinMode(led1, OUTPUT);
pinMode(led2, OUTPUT);
pinMode(led3, OUTPUT);
pinMode(led4, OUTPUT);
}
void loop()
{
digitalWrite(led1, HIGH);
digitalWrite(led2, HIGH);
digitalWrite(led3, HIGH);
digitalWrite(led4, HIGH);
delay(1000);
digitalWrite(led1, LOW);
digitalWrite(led2, LOW);
digitalWrite(led3, LOW);
digitalWrite(led4, LOW);
delay(1000);
}
********************************************************************
Switches example
const byte LED[] = {13,12,11,10};
#define BUTTON1 A1
#define BUTTON2 A2
void setup()
{
// initialize the digital pin as an output.
/* Set each pin to outputs */
pinMode(LED[0], OUTPUT);
pinMode(LED[1], OUTPUT);
pinMode(LED[2], OUTPUT);
pinMode(LED[3], OUTPUT);
}
void loop()
{
if(!digitalRead(BUTTON1))
{
digitalWrite(LED[0], HIGH);
digitalWrite(LED[1], HIGH);
digitalWrite(LED[2], HIGH);
digitalWrite(LED[3], HIGH);
}
if(!digitalRead(BUTTON2))
{
digitalWrite(LED[0], LOW);
digitalWrite(LED[1], LOW);
digitalWrite(LED[2], LOW);
digitalWrite(LED[3], LOW);
}
}
********************************************************************
Potentiometer 1
#define Pot1 0
void setup()
{
Serial.begin(9600);
}
/* Main Program */
void loop()
{
Serial.print(“Potentiometer reading: “);
Serial.println(analogRead(Pot1));
/* Wait 0.5 seconds before reading again */
delay(500);
}
********************************************************************
Pot and led
const byte LED[] = {13,12,11,10};
#define Pot1 0
void setup()
{
Serial.begin(9600);
// initialize the digital pin as an output.
/* Set each pin to outputs */
pinMode(LED[0], OUTPUT);
pinMode(LED[1], OUTPUT);
pinMode(LED[2], OUTPUT);
pinMode(LED[3], OUTPUT);
}
/* Main Program */
void loop()
{
int PotValue;
//Serial.print(“Potentiometer reading: “);
PotValue = analogRead(Pot1);
/* Wait 0.5 seconds before reading again */
if(PotValue < 400)
{
digitalWrite(LED[0], LOW);
digitalWrite(LED[1], LOW);
digitalWrite(LED[2], LOW);
digitalWrite(LED[3], LOW);
Serial.print(“Potentiometer: “);
Serial.println(PotValue);
}
else
{
digitalWrite(LED[0], HIGH);
digitalWrite(LED[1], HIGH);
digitalWrite(LED[2], HIGH);
digitalWrite(LED[3], HIGH);
Serial.print(“Potentiometer: “);
Serial.println(PotValue);
}
delay(500);
}
********************************************************************
segment display
/* Define shift register pins used for seven segment display */
#define LATCH_DIO 4
#define CLK_DIO 7
#define DATA_DIO 8
/* Segment byte maps for numbers 0 to 9 */
const byte SEGMENT_MAP[] = {0xC0,0xF9,0xA4,0xB0,0x99,0x92,0x82,0xF8,0X80,0X90};
/* Byte maps to select digit 1 to 4 */
const byte SEGMENT_SELECT[] = {0xF1,0xF2,0xF4,0xF8};
void setup ()
{
/* Set DIO pins to outputs */
pinMode(LATCH_DIO,OUTPUT);
pinMode(CLK_DIO,OUTPUT);
pinMode(DATA_DIO,OUTPUT);
}
/* Main program */
void loop()
{
/* Update the display with the current counter value */
WriteNumberToSegment(0 , 0);
WriteNumberToSegment(1 , 1);
WriteNumberToSegment(2 , 2);
WriteNumberToSegment(3 , 3);
}
/* Write a decimal number between 0 and 9 to one of the 4 digits of the display */
void WriteNumberToSegment(byte Segment, byte Value)
{
digitalWrite(LATCH_DIO,LOW);
shiftOut(DATA_DIO, CLK_DIO, MSBFIRST, SEGMENT_MAP[Value]);
shiftOut(DATA_DIO, CLK_DIO, MSBFIRST, SEGMENT_SELECT[Segment] );
digitalWrite(LATCH_DIO,HIGH);
}
********************************************************************
Read pot and display value on display
/* Define shift register pins used for seven segment display */
#define LATCH_DIO 4
#define CLK_DIO 7
#define DATA_DIO 8
#define Pot1 0
/* Segment byte maps for numbers 0 to 9 */
const byte SEGMENT_MAP[] = {0xC0,0xF9,0xA4,0xB0,0x99,0x92,0x82,0xF8,0X80,0X90};
/* Byte maps to select digit 1 to 4 */
const byte SEGMENT_SELECT[] = {0xF1,0xF2,0xF4,0xF8};
void setup ()
{
Serial.begin(9600);
/* Set DIO pins to outputs */
pinMode(LATCH_DIO,OUTPUT);
pinMode(CLK_DIO,OUTPUT);
pinMode(DATA_DIO,OUTPUT);
}
/* Main program */
void loop()
{
int PotValue;
PotValue = analogRead(Pot1);
Serial.print(“Potentiometer: “);
Serial.println(PotValue);
/* Update the display with the current counter value */
WriteNumberToSegment(0 , PotValue / 1000);
WriteNumberToSegment(1 , (PotValue / 100) % 10);
WriteNumberToSegment(2 , (PotValue / 10) % 10);
WriteNumberToSegment(3 , PotValue % 10);
}
/* Write a decimal number between 0 and 9 to one of the 4 digits of the display */
void WriteNumberToSegment(byte Segment, byte Value)
{
digitalWrite(LATCH_DIO,LOW);
shiftOut(DATA_DIO, CLK_DIO, MSBFIRST, SEGMENT_MAP[Value]);
shiftOut(DATA_DIO, CLK_DIO, MSBFIRST, SEGMENT_SELECT[Segment] );
digitalWrite(LATCH_DIO,HIGH);
}
********************************************************************
https://www.mactronica.com.co/modulo-wifi-nodemcu-amica-esp8266-esp12e
NodeMCU ESP8266 es una plataforma de desarrollo similar a Arduino especialmente orientada al Internet de las cosas (IoT). La placa NodeMcu v2 ESP8266 tiene como núcleo al SoM ESP-12E que a su vez está basado en el SoC Wi-Fi ESP8266, integra además el conversor USB-Serial TTL CP2102 y conector micro-USB necesario para la programación y comunicación a PC. NodeMcu v2 ESP8266 está diseñado especialmente para trabajar montado en protoboard o soldado sobre una placa. Posee un regulador de voltaje de 3.3V en placa, esto permite alimentar la placa directamente del puerto micro-USB o por los pines 5V y GND. Los pines de entradas/salidas (GPIO) trabajan a 3.3V por lo que para conexión a sistemas de 5V es necesario utilizar conversores de nivel.
NodeMCU viene con un firmware pre-instalado el cual nos permite trabajar con el lenguaje interpretado LUA, enviandole comandos mediante el puerto serial (CP2102). Las tarjetas NodeMCU y Wemos D1 mini son las plataformas mas usadas en proyectos de Internet de las cosas (IoT). No compite con Arduino, pues cubren objetivos distintos.
El SoC(System On a Chip) ESP8266 de Espressif Systems es un chip especialmente diseñado para las necesidades de un mundo conectado, integra un potente microcontrolador con arquitectura de 32 bits (más potente que el Arduino Due) y conectividad Wi-Fi. El SoM(System on Module) ESP-12E fabricado por Ai-Thinker integra en un módulo el SoC ESP8266, memoria FLASH, cristal oscilador y antena WiFi en PCB.
La plataforma ESP8266 permite el desarrollo de aplicaciones en diferentes lenguajes como: Arduino, Lua, MicroPython, C/C++, Scratch. Al trabajar dentro del entorno Arduino podremos utilizar un lenguaje de programación conocido y hacer uso de un IDE sencillo de utilizar, además de hacer uso de toda la información sobre proyectos y librerías disponibles en internet. La comunidad de usuarios de Arduino es muy activa y da soporte a plataformas como el ESP8266.
Arduino desde cero - Capítulo 2 - Instalación IDE Arduino, Esp-8266, Esp-32 y Drivers
https://www.youtube.com/watch?v=imsB0x_-4TY
Recursos: https://www.dropbox.com/scl/fi/zdp6n0...