1. Getting started with Python for science
This part of the Scipy lecture notes is a self-contained introduction to everything that is needed to use Python for science, from the language itself, to numerical computing or plotting.
- 1.1. Python scientific computing ecosystem
- 1.2. The Python language
- 1.3. NumPy: creating and manipulating numerical data
- 1.4. Matplotlib: plotting
- 1.5. Scipy : high-level scientific computing
- 1.5.1. File input/output:
scipy.io
- 1.5.2. Special functions:
scipy.special
- 1.5.3. Linear algebra operations:
scipy.linalg
- 1.5.4. Interpolation:
scipy.interpolate
- 1.5.5. Optimization and fit:
scipy.optimize
- 1.5.6. Statistics and random numbers:
scipy.stats
- 1.5.7. Numerical integration:
scipy.integrate
- 1.5.8. Fast Fourier transforms:
scipy.fftpack
- 1.5.9. Signal processing:
scipy.signal
- 1.5.10. Image manipulation:
scipy.ndimage
- 1.5.11. Summary exercises on scientific computing
- 1.5.12. Full code examples for the scipy chapter
- 1.5.1. File input/output:
- 1.6. Getting help and finding documentation
No hay comentarios:
Publicar un comentario