Dynamics and control with Jupyter Notebooks
https://dynamics-and-control.readthedocs.io/en/latest/index.html
Dynamics and control
- 1. Introduction to Sympy and the Jupyter Notebook for engineering calculations
- 2. Python stuff not done in MPR
- 3. List comprehensions
- 4. Tuples
- 5. The for loop in Python
- 6. lambda
- 7. The Jupyter notebook cheat sheet
- 8. The draining cup problem
- 9. Equation solving tools
- 10. The problem with simple math on computers
- 11. Read simulation input from a file
- 12. Fed Batch Bioreactor
- 13. CSTR system
- 14. Mixing system
- 15. Steady state calculation
- 16. Design
- 17. Dynamic simulation
- 18. Valve equation
- 19. A note about simplification
- 20. Laplace transforms in SymPy
- 21. Convolution and transfer functions
- 22. Visualising complex functions
- 23. Standard process inputs
- 24. First order systems
- 25. Sinusoidal response
- 26. Random response generator
- 27. Simulation of arbitrary transfer functions
- 28. Simplifying block diagrams
- 29. Approximation
- 30. Transfer function matrices
- 31. Conversion to state space
- 32. State space representation
- 33. Linear regression
- 34. Create the design matrices
- 35. Nonlinear regression
- 36. Fitting step responses
- 37. Neural network regression
- 38. Fourier series
- 39. What does a sinusoid sound like?
- 40. Frequency response plots
- 41. Bode
- 42. Phase unwrapping
- 43. Nyquist
- 44. With the control library
- 45. Asymptotic Bode diagrams
- 46. Systems with real poles
- 47. Systems with complex poles
- 48. Dead time
- 49. Strategies for filtering out noise from a sampled signal
- 50. Moving averages
- 51. The -transform
- 52. Instructions
- 53. PID step responses
- 54. First-order system with proportional control
- 55. PID control on TCLab
- 56. Programmatic interaction
- 57. Advanced usage
- 58. Accessing the historian
- 59. More detailed analysis
- 60. Closed loop controlled responses
- 61. Closed loop stability
- 62. Using the control library
- 63. Why do we need the Routh Array
- 64. A better way
- 65. Root locus diagrams
- 66. Direct synthesis PID design
- 67. Minimal integral measures
- 68. ITAE parameters for FOPDT system
- 69. Interactive version
- 70. Stability in the frequency domain
- 71. Dead time reduces control performance
- 72. Smith Predictor
- 73. Numeric simulation
- 74. Symbolic calculation
- 75. Discrete PI with ITAE parameters
- 76. Dahlin controller
- 77. Discretise the system
- 78. Dahlin Controller
- 79. Continuous response
- 80. Simple discrete simulation: Dahlin controller
- 81. Noise models
- 82. Multivariable control
- 83. Multivariable Stability analysis
- 84. Multivariable pairing (RGA)
- 85. Eigenvalue problem
- 86. Decoupling
- 87. Model Predictive Control
- 88. Control valve design
- 89. No delays
- 90. Dead time
- 91. Nonlinear tank system
- 92. PI Control
- 93. Classes
- 94. Taking off the engine cover
- 95. Objects
- 96. A discrete controller class
- 97. Blocksim
- 98. Disturbances
- 99. Algebraic equations
- 100. FOPDT fit
- 55. PID control on TCLab
- 56. Programmatic interaction
- 57. Advanced usage
- 58. Accessing the historian
- 59. More detailed analysis
- 101. TCLab in the frequency domain
No hay comentarios:
Publicar un comentario