Find QR Decomposition (Householder Method) online step by step
1 -1 4
1 4 -2
1 4 2
1 -1 0
https://atozmath.com/MatrixEv.aspx?q=qrdecomphh&q1=1%2C-1%2C4%3B1%2C4%2C-2%3B1%2C4%2C2%3B1%2C-1%2C0%60qrdecomphh%60D#tblSolution
Find QR Decomposition (Householder Method) ...
1 -1 4
1 4 -2
1 4 2
1 -1 0
Solution:
||a1||=√12+12+12+12=√4=2
v1=a1-sign(a11)||a1||e1 | = |
| - | 2 | × |
| = |
|
H1=I-2⋅v1⋅vT1vT1⋅v1 | = |
| - | 24 | ⋅ |
| ⋅ |
| = |
| 0.5 | 0.5 | 0.5 | 0.5 |
|
| 0.5 | 0.5 | -0.5 | -0.5 |
|
| 0.5 | -0.5 | 0.5 | -0.5 |
|
| 0.5 | -0.5 | -0.5 | 0.5 |
|
|
H1⋅A1 | = |
| 0.5 | 0.5 | 0.5 | 0.5 |
|
| 0.5 | 0.5 | -0.5 | -0.5 |
|
| 0.5 | -0.5 | 0.5 | -0.5 |
|
| 0.5 | -0.5 | -0.5 | 0.5 |
|
| × |
| = |
|
Now removing 1st row and 1st column, we get
||a2||=√02+02+(-5)2=√25=5
v2=a1-sign(a11)||a1||e1 | = |
| - | 5 | × |
| = |
|
H2=I-2⋅v1⋅vT1vT1⋅v1 | = |
| - | 250 | ⋅ |
| ⋅ |
| = |
|
Now removing 1st row and 1st column, we get
Since,
H2H1A=R
H2H1A= |
| × |
| 0.5 | 0.5 | 0.5 | 0.5 |
|
| 0.5 | 0.5 | -0.5 | -0.5 |
|
| 0.5 | -0.5 | 0.5 | -0.5 |
|
| 0.5 | -0.5 | -0.5 | 0.5 |
|
| × |
| = |
| = R |
Also
A=H1H2R and
A=QR,
∴Q=H1H2
Q=H1H2= |
| 0.5 | 0.5 | 0.5 | 0.5 |
|
| 0.5 | 0.5 | -0.5 | -0.5 |
|
| 0.5 | -0.5 | 0.5 | -0.5 |
|
| 0.5 | -0.5 | -0.5 | 0.5 |
|
| × |
| = |
| 0.5 | -0.5 | 0.5 | -0.5 |
|
| 0.5 | 0.5 | -0.5 | -0.5 |
|
| 0.5 | 0.5 | 0.5 | 0.5 |
|
| 0.5 | -0.5 | -0.5 | 0.5 |
|
|
checking
Q×R=A?
Q×R | = |
| 0.5 | -0.5 | 0.5 | -0.5 |
|
| 0.5 | 0.5 | -0.5 | -0.5 |
|
| 0.5 | 0.5 | 0.5 | 0.5 |
|
| 0.5 | -0.5 | -0.5 | 0.5 |
|
| × |
| = |
|
Solution provided by AtoZmath.com
No hay comentarios:
Publicar un comentario