https://www.math.hmc.edu/calculus/tutorials/gramschmidt/
v1
v2



vn
V
v1 2 w v1 v1+ v2 2 w v2 v2+![]() ![]() + vn 2 w vn vn![]() u1 u2![]() ![]() ![]() ![]() un![]() v1 v2![]() ![]() ![]() ![]() vn![]() |
|
Step 2 Let
v1
2
u2
v1
v1Step 3 Let
v1
2
u3
v1
v1−
v2
2
u3
v2
v2Step 4 Let
v1
2
u4
v1
v1−
v2
2
u4
v2
v2−
v3
2
u4
v3
v3
v2


Continue this process up to
v1
v2



vn
Notes
- To obtain an orthonormal basis for an inner product space
V , use the Gram-Schmidt algorithm to construct an orthogonal basis. Then simply normalize each vector in the basis.
- For
Rn with the Eudlidean inner product (dot product), we of course already know of the orthonormal basis . For more abstract spaces, however, the existence of an orthonormal basis is not obvious. The Gram-Schmidt algorithm is powerful in that it not only guarantees the existence of an orthonormal basis for any inner product space, but actually gives the construction of such a basis.
(1
0
0



0)
(0
1
0



0)



(0



0
1)
Example
Let
(1
−1
1)
(1
0
1)
(1
1
2)
Step 1
−1
1)Step 2
0
1)−
(1
−1
1)
2(1
0
1)
(1
−1
1)(1
−1
1)(1
0
1)−32(1
−1
1)(31
32
31)
Step 3
1
2)−
(1
−1
1)
2(1
1
2)
(1
−1
1)(1
−1
1)−
(31
32
31)
2(1
1
2)
(31
32
31)(31
32
31)(1
1
2)−32(1
−1
1)−25(31
32
31)(2−1
0
21)
You can verify that
(1
−1
1)
(31
32
31)
(2−1
0
21)

3
3
3−
3
3
3

6
6
3
6
6
6

2−
2
0
2
2

Key Concepts
u1
u2



un
v1
v2



vn
Step 2 Let
v1
2
u2
v1
v1Step 3 Let
v1
2
u3
v1
v1−
v2
2
u3
v2
v2










No hay comentarios:
Publicar un comentario