martes, 2 de abril de 2013
e^{x} = \sum^{\infin}_{n=0} \frac{x^n}{n!} = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots\quad\text{ for all } x\!
\log(1-x) = - \sum^{\infin}_{n=1} \frac{x^n}n\quad\text{ for } |x| < 1
\log(1+x) = \sum^\infin_{n=1} (-1)^{n+1}\frac{x^n}n\quad\text{ for } |x| < 1
\frac{1}{1-x} = \sum^\infin_{n=0} x^n\quad\text{ for }|x| < 1\!
(1+x)^\alpha = \sum_{n=0}^\infty {\alpha \choose n} x^n\quad\text{ for all }|x| < 1 \text{ and all complex } \alpha\!
{\alpha\choose n} = \prod_{k=1}^n \frac{\alpha-k+1}k = \frac{\alpha(\alpha-1)\cdots(\alpha-n+1)}{n!}
\sin x = \sum^{\infty}_{n=0} \frac{(-1)^n}{(2n+1)!} x^{2n+1} = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \cdots\quad\text{ for all } x\!
\cos x = \sum^{\infin}_{n=0} \frac{(-1)^n}{(2n)!} x^{2n} = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \cdots\quad\text{ for all } x\!
\tan x = \sum^{\infin}_{n=1} \frac{B_{2n} (-4)^n (1-4^n)}{(2n)!} x^{2n-1} = x + \frac{x^3}{3} + \frac{2 x^5}{15} + \cdots\quad\text{ for }|x| < \frac{\pi}{2}\!
\sec x = \sum^{\infin}_{n=0} \frac{(-1)^n E_{2n}}{(2n)!} x^{2n}\quad\text{ for }|x| < \frac{\pi}{2}\!
\arcsin x = \sum^{\infin}_{n=0} \frac{(2n)!}{4^n (n!)^2 (2n+1)} x^{2n+1}\quad\text{ for }|x| \le 1\!
\arccos x ={\pi\over 2}-\arcsin x={\pi\over 2}- \sum^{\infin}_{n=0} \frac{(2n)!}{4^n (n!)^2 (2n+1)} x^{2n+1}\quad\text{ for }|x| \le 1\!
\arctan x = \sum^{\infin}_{n=0} \frac{(-1)^n}{2n+1} x^{2n+1}\quad\text{ for }|x| \le 1, x\not=\pm i\!
\sinh x = \sum^{\infin}_{n=0} \frac{x^{2n+1}}{(2n+1)!} = x + \frac{x^3}{3!} + \frac{x^5}{5!} + \cdots\quad\text{ for all } x\!
\cosh x = \sum^{\infin}_{n=0} \frac{x^{2n}}{(2n)!} = 1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \cdots\quad\text{ for all } x\!
\tanh x = \sum^{\infin}_{n=1} \frac{B_{2n} 4^n (4^n-1)}{(2n)!} x^{2n-1} = x-\frac{1}{3}x^3+\frac{2}{15}x^5-\frac{17}{315}x^7+\cdots \quad\text{ for }|x| < \frac{\pi}{2}\!
\mathrm{arcsinh} (x) = \sum^{\infin}_{n=0} \frac{(-1)^n (2n)!}{4^n (n!)^2 (2n+1)} x^{2n+1}\quad\text{ for }|x| \le 1\!
\mathrm{arctanh} (x) = \sum^{\infin}_{n=0} \frac{x^{2n+1}}{2n+1} \quad\text{ for }|x| \le 1, x\not=\pm 1\!
Suscribirse a:
Enviar comentarios (Atom)
No hay comentarios:
Publicar un comentario