lunes, 15 de mayo de 2017

Biger Vieta polynomial Algorithm


https://mat.iitm.ac.in/home/sryedida/public_html/caimna/transcendental/polynomial%20methods/bv%20examples.html#exp1




1. Find the root of x4 - 3x3 + 3x2 - 3x + 2 = 0
In this problem the coefficients are a0 = 2, a1 = -3, a2 = +3, a3 = -3, a4 = +1
Let the initial approximation to p be p0 = 0.5
 a0 = 2.0              a1= -3.0             a2 = 3.0       a3 = -3.0       a4 = 1.0
 b0 = 1.0              b1 = -2.5           b2 = 1.75     b3 = -2.125    b4 = 0.9375
 c0 = 1.0               c1 = -2.0           c2 = 0.75     c3 = -1.75 
p1 = p0 - (b4 / c3) = 1.0357143
 a0 = 2.0            a1 = -3.0            a2 = 3.0            a3 = -3.0            a4 = 1.0
 b0 = 1.0            b1 = -1.964       b2 = 0.965        b3 = -1.999        b4 = -0.0714
 c0 = 1.0            c1 = -0.928       c2 = 0.0038       c3 = -1.996
p2 = 0.9999518
 a0= 2.0              a1 = -3.0            a2 = 3.0           a3 = -3.0           a4 = 1.0
 b0 = 1.0             b1 = -2.00          b2 = 1.00        b3 = -2.0           b4 = 9.64E-5
 c0 = 1.0             c1 = -1.00           c2 = 2.38E-7   c3 = -1.999
p3 = 1.0
 
So one of the root of the give equation is 1.0
https://mat.iitm.ac.in/home/sryedida/public_html/caimna/images/backs.gif


2. Find the root of  x - x - 10 = 0
In this problem the coefficients are a0 = 2, a1 = -3, a2 = +3, a3 = -3, a4 = +1
Let the initial approximation to p be p0 = 1.5
 a0 = -10.0     a1 = -1.0      a2 = 0.0     a3 = 0.0        a4 = 1.0
 b0 = 1.0        b1 = 1.5       b2 = 2.25   b3 = 2.375    b4 = -6.4375
 c0 = 1.0        c1 = 3.0        c2 = 6.75   c3 = 12.5
p1 = 2.0149999
 a0 = -10.0        a1 = -1.0      a2 = 0.0     a3 = 0.0     a4 = 1.0
 b0 = 1.0           b1 = 2.01     b2 = 4.06   b3 = 7.18   b4 = 4.47
 c0 = 1.0           c1 = 4.029   c2 = 12.18  c3 = 31.72
p2 = 1.87409
 a0 = -10.0           a1 = -1.0           a2 = 0.0               a3 = 0.0            a4 = 1.0
 b0 = 1.0              b1 = 1.87          b2 = 3.51             b3 = 5.58          b4 = 0.46
  c0 = 1.0             c1 = 3.74          c2 = 10.54            c3 = 25.32 
p3 = 1.8558675
 a0 = -10.0     a1 = -1.0         a2 = 0.0            a3 = 0.0       a4 = 1.0
 b0 = 1.0        b1 = 1.85        b2 = 3.44          b3 = 5.39     b4 = 0.0069
 c0 = 1.0        c1 = 3.71         c2 = 10.33        c3 = 24.56 
p4 = 1.8555846
 a0 = -10.0         a1 = -1.0            a2 = 0.0              a3 = 0.0         a4 = 1.0
 b0 = 1.0            b1 = 1.855          b2 = 3.44           b3 = 5.38       b4 = 2.8E-6
 c0 = 1.0            c1 = 3.71            c2 = 10.329        c3 = 24.556
p5 = 1.8555845
 
 
 
so one of the root of the given equation is 1.8555845
https://mat.iitm.ac.in/home/sryedida/public_html/caimna/images/backs.gif


3. Find the root of  x3 - 6x2  + 11x  - 6 = 0
In this problem the coefficients are a0 = 2, a1 = -3, a2 = +3, a3 = -3, a4 = +1
Let the initial approximation to p be p0 = 0.5
 a0 = -6.0           a1 = 11.0            a2 = -6.0             a3 = 1.0
 b0 = 1.0            b1 = -5.5            b2 = 8.25             b3 = -1.875
 c0 = 1.0            c1 = -5.0             c2 = 5.75 
 p1 = 0.826087
 a0 = -6.0       a1 = 11.0             a2 = -6.0             a3 = 1.0
 b0 = 1.0        b1 = -5.17           b2 = 6.72             b3 = -0.444
 c0 = 1.0        c1 = -4.35           c2 = 3.134
 p2 = 0.96769285
 a0 = -6.0       a1 = 11.0        a2 = -6.0       a3 = 1.0
 b0 = 1.0        b1 = -5.03       b2 = 6.130    b3 = -0.0677
 c0 = 1.0        c1 = -4.06       c2 = 2.196
 p3 = 0.998544
 a0 = -6.0           a1 = 11.0           a2 = -6.0        a3 = 1.0
 b0 = 1.0            b1 = -5.001       b2 = 6.005    b3 = -0.002
 c0 = 1.0            c1 = -4.002       c2 = 2.0087 
p4 = 0.99999696
 a0 = -6.0       a1 = 11.0        a2 = -6.0       a3 = 1.0
 b0 = 1.0        b1 = -5.00      b2 = 6.000    b3 = -5.7E-6
 c0 = 1.0        c1 = -4.00       c2 = 2.00
p5 = 0.9999998
 
 
so one of the root of the given equation is 0.9999998
https://mat.iitm.ac.in/home/sryedida/public_html/caimna/images/backs.gif

 



4. Find the root of   x3 - 4x2 + 5x - 2 = 0
In this problem the coefficients are a0 = 2, a1 = -3, a2 = +3, a3 = -3, a4 = +1
Let the initial approximation to p be p0 = 1.9
 a0 = -2.0        a1 = 5.0             a2 = -4.0            a3 = 1.0
 b0 = 1.0         b1 = -2.1            b2 = 1.01           b3 = -0.081
 c0 = 1.0         c1 = -0.19          c2 = 0.63
p1 = 2.0285707
 a0 = -2.0        a1 = 5.0           a2 = -4.0           a3 = 1.0
 b0 = 1.0         b1 = -1.97       b2 = 1.01           b3 = 0.030
 c0 = 1.0          c1 = 0.057      c2 = 1.116 
 p2 = 2.0015035
 a0 = -2.0           a1 = 5.0           a2 = -4.0           a3 = 1.0
 b0 = 1.0            b1 = -1.99       b2 = 1.00          b3 = 0.0015
 c0 = 1.0            c1 = 0.003       c2 = 1.0060205 
p3 = 2.0000048
 a0 = -2.0               a1 = 5.0           a2 = -4.0            a3 = 1.0
 b0 = 1.0                b1 = -1.99        b2 = 1.0             b3 = 4.7E-6
 c0 = 1.0                c1 = 9.5E-6      c2 = 1.0000191
root = 2.0 
so one of the root of the given equation is 2.0
https://mat.iitm.ac.in/home/sryedida/public_html/caimna/images/backs.gif

 
 



5. Find the root of    x4 - x3 + 3x2 + x - 4 = 0
In this problem the coefficients are a0 = 2, a1 = -3, a2 = +3, a3 = -3, a4 = +1
Let the initial approximation to p be p0 = 1.5
 a0 = -4.0     a1 = 1.0    a2 = 3.0     a3 = -1.0       a4 = 1.0
 b0 = 1.0       b1 = 0.5   b2 = 3.75   b3 = 6.625    b4 = 5.9375
 c0 = 1.0       c1 = 2.0    c2 = 6.75   c3 = 16.75 
p1 = 1.1455224
 a0 = -4.0      a1 = 1.0         a2 = 3.0     a3 = -1.0     a4 = 1.0
 b0 = 1.0       b1 = 0.145     b2 = 3.16   b3 = 4.63    b4 = 1.3009324
 c0 = 1.0       c1 = 1.29       c2 = 4.64    c3 = 9.95 
p2 = 1.0147647
  a0 = -4.0          a1 = 1.0           a2 = 3.0       a3 = -1.0              a4 = 1.0
  b0 = 1.0           b1 = 0.015       b2 = 3.015   b3 = 4.06             b4 = 0.12
  c0 = 1.0           c1 = 1.029       c2 = 4.059    c3 = 8.179151 
p3 = 1.0001624
 a0 = -4.0         a1 = 1.0                 a2 = 3.0      a3 = -1.0          a4 = 1.0
 b0 = 1.0          b1 = 1.62E-4         b2 = 3.00    b3 = 4.001       b4 = 0.0013
 c0 = 1.0          c1 = 1.0003           c2 = 4.001   c3 = 8.001948 
 p4 = 1.0
 a0 = -4.0          a1 = 1.0         a2 = 3.0           a3 = -1.0            a4 = 1.0
 b0 = 1.0           b1 = 0.0         b2 = 3.0          b3 = 4.0             b4 = 0.0
 c0 = 1.0           c1 = 1.0          c2 = 4.0          c3 = 8.0
 p5 = 1.0
 
so one of the root of the given equation is 1.0
https://mat.iitm.ac.in/home/sryedida/public_html/caimna/images/backs.gif

 



6. Find the root of  x3 - x - 4 = 0
In this problem the coefficients are a0 = 2, a1 = -3, a2 = +3, a3 = -3, a4 = +1
Let the initial approximation to p be p0 = 1.5
 a0 = -4.0     a1 = -1.0       a2 = -0.0              a3 = 1.0
 b0 = 1.0      b1 = 1.5         b2 = 1.25            b3 = -2.125
 c0 = 1.0       c1 = 3.0       c2 = 5.75 
p1 = 1.8695652
 a0 = -4.0       a1 = -1.0        a2 = -0.0        a3 = 1.0
 b0 = 1.0        b1 = 1.86       b2 = 2.49        b3 = 0.66
 c0 = 1.0        c1 = 3.73        c2 = 9.48 
 p2 = 1.7994524
 a0 = -4.0       a1 = -1.0         a2 = -0.0              a3 = 1.0
 b0 = 1.0        b1 = 1.79        b2 = 2.24             b3 = 0.027
 c0 = 1.0        c1 = 3.59        c2 = 8.71 
p3 = 1.796328
 a0 = -4.0      a1 = -1.0      a2 = -0.0     a3 = 1.0
 b0 = 1.0       b1 = 1.79      b2 = 2.22   b3 = 5.27E-5
 c0 = 1.0       c1 = 3.59       c2 = 8.68
p4 = 1.7963219
 
so one of the root of the given equation is 1.796.
https://mat.iitm.ac.in/home/sryedida/public_html/caimna/images/backs.gif


Problems to Work-Out:
 
7.
Find the root of  x4 - x - 4 = 0 


8.
Find the root of  2x3 - 3x2 + 2x - 3 = 0


9.
Find the root of  x3- 5x2 + 4x - 3 = 0


10.
Find the root of  x3 - x2 - x + 1 = 0


11.
Find the root of  9x4 + 30x3 + 34x2 + 30x + 25 = 0


12.
Find the root of x5 - 2x4+4x3-x2-7x+5= 0

No hay comentarios:

Publicar un comentario