https://mat.iitm.ac.in/home/sryedida/public_html/caimna/transcendental/polynomial%20methods/bv%20examples.html#exp1
In this
problem the coefficients are a0 = 2, a1 = -3, a2
= +3, a3 = -3, a4 = +1
Let the
initial approximation to p be p0 = 0.5
a0
=
2.0
a1=
-3.0 a2
= 3.0 a3 =
-3.0 a4 = 1.0
b0 = 1.0 b1 = -2.5 b2 = 1.75 b3 = -2.125 b4 = 0.9375
c0 = 1.0 c1 = -2.0 c2 = 0.75 c3 = -1.75
b0 = 1.0 b1 = -2.5 b2 = 1.75 b3 = -2.125 b4 = 0.9375
c0 = 1.0 c1 = -2.0 c2 = 0.75 c3 = -1.75
p1 =
p0 - (b4 / c3) = 1.0357143
a0
= 2.0 a1
= -3.0 a2
= 3.0 a3
= -3.0 a4
= 1.0
b0 = 1.0 b1 = -1.964 b2 = 0.965 b3 = -1.999 b4 = -0.0714
c0 = 1.0 c1 = -0.928 c2 = 0.0038 c3 = -1.996
b0 = 1.0 b1 = -1.964 b2 = 0.965 b3 = -1.999 b4 = -0.0714
c0 = 1.0 c1 = -0.928 c2 = 0.0038 c3 = -1.996
p2
= 0.9999518
a0=
2.0
a1 =
-3.0 a2
= 3.0 a3
= -3.0 a4
= 1.0
b0 = 1.0 b1 = -2.00 b2 = 1.00 b3 = -2.0 b4 = 9.64E-5
c0 = 1.0 c1 = -1.00 c2 = 2.38E-7 c3 = -1.999
b0 = 1.0 b1 = -2.00 b2 = 1.00 b3 = -2.0 b4 = 9.64E-5
c0 = 1.0 c1 = -1.00 c2 = 2.38E-7 c3 = -1.999
p3
= 1.0
So one
of the root of the give equation is 1.0
|
In this
problem the coefficients are a0 = 2, a1 = -3, a2
= +3, a3 = -3, a4 = +1
Let the
initial approximation to p be p0 = 1.5
a0
= -10.0 a1 =
-1.0 a2 = 0.0
a3 = 0.0 a4 =
1.0
b0 = 1.0 b1 = 1.5 b2 = 2.25 b3 = 2.375 b4 = -6.4375
c0 = 1.0 c1 = 3.0 c2 = 6.75 c3 = 12.5
b0 = 1.0 b1 = 1.5 b2 = 2.25 b3 = 2.375 b4 = -6.4375
c0 = 1.0 c1 = 3.0 c2 = 6.75 c3 = 12.5
p1
= 2.0149999
a0
= -10.0 a1 =
-1.0 a2 = 0.0
a3 = 0.0 a4 = 1.0
b0 = 1.0 b1 = 2.01 b2 = 4.06 b3 = 7.18 b4 = 4.47
c0 = 1.0 c1 = 4.029 c2 = 12.18 c3 = 31.72
b0 = 1.0 b1 = 2.01 b2 = 4.06 b3 = 7.18 b4 = 4.47
c0 = 1.0 c1 = 4.029 c2 = 12.18 c3 = 31.72
p2
= 1.87409
a0
= -10.0 a1
= -1.0 a2
=
0.0
a3 =
0.0 a4
= 1.0
b0 = 1.0 b1 = 1.87 b2 = 3.51 b3 = 5.58 b4 = 0.46
c0 = 1.0 c1 = 3.74 c2 = 10.54 c3 = 25.32
b0 = 1.0 b1 = 1.87 b2 = 3.51 b3 = 5.58 b4 = 0.46
c0 = 1.0 c1 = 3.74 c2 = 10.54 c3 = 25.32
p3
= 1.8558675
a0
= -10.0 a1 =
-1.0 a2 =
0.0 a3
= 0.0 a4 = 1.0
b0 = 1.0 b1 = 1.85 b2 = 3.44 b3 = 5.39 b4 = 0.0069
c0 = 1.0 c1 = 3.71 c2 = 10.33 c3 = 24.56
b0 = 1.0 b1 = 1.85 b2 = 3.44 b3 = 5.39 b4 = 0.0069
c0 = 1.0 c1 = 3.71 c2 = 10.33 c3 = 24.56
p4
= 1.8555846
a0
= -10.0 a1 =
-1.0 a2
=
0.0
a3 = 0.0 a4
= 1.0
b0 = 1.0 b1 = 1.855 b2 = 3.44 b3 = 5.38 b4 = 2.8E-6
c0 = 1.0 c1 = 3.71 c2 = 10.329 c3 = 24.556
b0 = 1.0 b1 = 1.855 b2 = 3.44 b3 = 5.38 b4 = 2.8E-6
c0 = 1.0 c1 = 3.71 c2 = 10.329 c3 = 24.556
p5
= 1.8555845
so one
of the root of the given equation is 1.8555845.
|
In this
problem the coefficients are a0 = 2, a1 = -3, a2
= +3, a3 = -3, a4 = +1
Let the initial approximation to p be p0 = 0.5
Let the initial approximation to p be p0 = 0.5
a0
= -6.0 a1
= 11.0 a2
= -6.0
a3 = 1.0
b0 = 1.0 b1 = -5.5 b2 = 8.25 b3 = -1.875
c0 = 1.0 c1 = -5.0 c2 = 5.75
p1 = 0.826087
b0 = 1.0 b1 = -5.5 b2 = 8.25 b3 = -1.875
c0 = 1.0 c1 = -5.0 c2 = 5.75
p1 = 0.826087
a0
= -6.0 a1 =
11.0 a2
= -6.0
a3 = 1.0
b0 = 1.0 b1 = -5.17 b2 = 6.72 b3 = -0.444
c0 = 1.0 c1 = -4.35 c2 = 3.134
p2 = 0.96769285
b0 = 1.0 b1 = -5.17 b2 = 6.72 b3 = -0.444
c0 = 1.0 c1 = -4.35 c2 = 3.134
p2 = 0.96769285
a0
= -6.0 a1 =
11.0 a2 =
-6.0 a3 = 1.0
b0 = 1.0 b1 = -5.03 b2 = 6.130 b3 = -0.0677
c0 = 1.0 c1 = -4.06 c2 = 2.196
p3 = 0.998544
b0 = 1.0 b1 = -5.03 b2 = 6.130 b3 = -0.0677
c0 = 1.0 c1 = -4.06 c2 = 2.196
p3 = 0.998544
a0
= -6.0 a1
= 11.0 a2
= -6.0 a3 = 1.0
b0 = 1.0 b1 = -5.001 b2 = 6.005 b3 = -0.002
c0 = 1.0 c1 = -4.002 c2 = 2.0087
b0 = 1.0 b1 = -5.001 b2 = 6.005 b3 = -0.002
c0 = 1.0 c1 = -4.002 c2 = 2.0087
p4
= 0.99999696
a0
= -6.0 a1 =
11.0 a2 =
-6.0 a3 = 1.0
b0 = 1.0 b1 = -5.00 b2 = 6.000 b3 = -5.7E-6
c0 = 1.0 c1 = -4.00 c2 = 2.00
b0 = 1.0 b1 = -5.00 b2 = 6.000 b3 = -5.7E-6
c0 = 1.0 c1 = -4.00 c2 = 2.00
p5
= 0.9999998
so one
of the root of the given equation is 0.9999998.
|
In this
problem the coefficients are a0 = 2, a1 = -3, a2
= +3, a3 = -3, a4 = +1
Let the
initial approximation to p be p0 = 1.9
a0
= -2.0 a1 =
5.0 a2
= -4.0 a3
= 1.0
b0 = 1.0 b1 = -2.1 b2 = 1.01 b3 = -0.081
c0 = 1.0 c1 = -0.19 c2 = 0.63
p1 = 2.0285707
b0 = 1.0 b1 = -2.1 b2 = 1.01 b3 = -0.081
c0 = 1.0 c1 = -0.19 c2 = 0.63
p1 = 2.0285707
a0
= -2.0 a1 =
5.0 a2 =
-4.0 a3
= 1.0
b0 = 1.0 b1 = -1.97 b2 = 1.01 b3 = 0.030
c0 = 1.0 c1 = 0.057 c2 = 1.116
p2 = 2.0015035
b0 = 1.0 b1 = -1.97 b2 = 1.01 b3 = 0.030
c0 = 1.0 c1 = 0.057 c2 = 1.116
p2 = 2.0015035
a0
= -2.0 a1
= 5.0 a2
= -4.0 a3
= 1.0
b0 = 1.0 b1 = -1.99 b2 = 1.00 b3 = 0.0015
c0 = 1.0 c1 = 0.003 c2 = 1.0060205
p3 = 2.0000048
b0 = 1.0 b1 = -1.99 b2 = 1.00 b3 = 0.0015
c0 = 1.0 c1 = 0.003 c2 = 1.0060205
p3 = 2.0000048
a0
= -2.0
a1 = 5.0
a2 =
-4.0 a3
= 1.0
b0 = 1.0 b1 = -1.99 b2 = 1.0 b3 = 4.7E-6
c0 = 1.0 c1 = 9.5E-6 c2 = 1.0000191
b0 = 1.0 b1 = -1.99 b2 = 1.0 b3 = 4.7E-6
c0 = 1.0 c1 = 9.5E-6 c2 = 1.0000191
root =
2.0
so one
of the root of the given equation is 2.0.
|
In this
problem the coefficients are a0 = 2, a1 = -3, a2
= +3, a3 = -3, a4 = +1
Let the
initial approximation to p be p0 = 1.5
a0 = -4.0 a1 = 1.0 a2 = 3.0 a3 = -1.0 a4 = 1.0
b0 = 1.0 b1 = 0.5 b2 = 3.75 b3 = 6.625 b4 = 5.9375
c0 = 1.0 c1 = 2.0 c2 = 6.75 c3 = 16.75
a0 = -4.0 a1 = 1.0 a2 = 3.0 a3 = -1.0 a4 = 1.0
b0 = 1.0 b1 = 0.5 b2 = 3.75 b3 = 6.625 b4 = 5.9375
c0 = 1.0 c1 = 2.0 c2 = 6.75 c3 = 16.75
p1
= 1.1455224
a0
= -4.0 a1 =
1.0 a2 =
3.0 a3 = -1.0 a4
= 1.0
b0 = 1.0 b1 = 0.145 b2 = 3.16 b3 = 4.63 b4 = 1.3009324
c0 = 1.0 c1 = 1.29 c2 = 4.64 c3 = 9.95
b0 = 1.0 b1 = 0.145 b2 = 3.16 b3 = 4.63 b4 = 1.3009324
c0 = 1.0 c1 = 1.29 c2 = 4.64 c3 = 9.95
p2
= 1.0147647
a0
= -4.0 a1 =
1.0 a2 =
3.0 a3 =
-1.0
a4 = 1.0
b0 = 1.0 b1 = 0.015 b2 = 3.015 b3 = 4.06 b4 = 0.12
c0 = 1.0 c1 = 1.029 c2 = 4.059 c3 = 8.179151
b0 = 1.0 b1 = 0.015 b2 = 3.015 b3 = 4.06 b4 = 0.12
c0 = 1.0 c1 = 1.029 c2 = 4.059 c3 = 8.179151
p3
= 1.0001624
a0
= -4.0 a1 =
1.0
a2 = 3.0 a3 =
-1.0 a4 = 1.0
b0 = 1.0 b1 = 1.62E-4 b2 = 3.00 b3 = 4.001 b4 = 0.0013
c0 = 1.0 c1 = 1.0003 c2 = 4.001 c3 = 8.001948
p4 = 1.0
b0 = 1.0 b1 = 1.62E-4 b2 = 3.00 b3 = 4.001 b4 = 0.0013
c0 = 1.0 c1 = 1.0003 c2 = 4.001 c3 = 8.001948
p4 = 1.0
a0
= -4.0 a1 =
1.0 a2 =
3.0 a3 =
-1.0 a4
= 1.0
b0 = 1.0 b1 = 0.0 b2 = 3.0 b3 = 4.0 b4 = 0.0
c0 = 1.0 c1 = 1.0 c2 = 4.0 c3 = 8.0
b0 = 1.0 b1 = 0.0 b2 = 3.0 b3 = 4.0 b4 = 0.0
c0 = 1.0 c1 = 1.0 c2 = 4.0 c3 = 8.0
p5
= 1.0
so one
of the root of the given equation is 1.0.
|
In this
problem the coefficients are a0 = 2, a1 = -3, a2
= +3, a3 = -3, a4 = +1
Let the
initial approximation to p be p0 = 1.5
a0 = -4.0 a1 = -1.0 a2 = -0.0 a3 = 1.0
b0 = 1.0 b1 = 1.5 b2 = 1.25 b3 = -2.125
c0 = 1.0 c1 = 3.0 c2 = 5.75
p1 = 1.8695652
a0 = -4.0 a1 = -1.0 a2 = -0.0 a3 = 1.0
b0 = 1.0 b1 = 1.5 b2 = 1.25 b3 = -2.125
c0 = 1.0 c1 = 3.0 c2 = 5.75
p1 = 1.8695652
a0
= -4.0 a1 =
-1.0 a2 =
-0.0 a3 = 1.0
b0 = 1.0 b1 = 1.86 b2 = 2.49 b3 = 0.66
c0 = 1.0 c1 = 3.73 c2 = 9.48
p2 = 1.7994524
b0 = 1.0 b1 = 1.86 b2 = 2.49 b3 = 0.66
c0 = 1.0 c1 = 3.73 c2 = 9.48
p2 = 1.7994524
a0
= -4.0 a1 =
-1.0 a2 =
-0.0
a3 = 1.0
b0 = 1.0 b1 = 1.79 b2 = 2.24 b3 = 0.027
c0 = 1.0 c1 = 3.59 c2 = 8.71
p3 = 1.796328
b0 = 1.0 b1 = 1.79 b2 = 2.24 b3 = 0.027
c0 = 1.0 c1 = 3.59 c2 = 8.71
p3 = 1.796328
a0
= -4.0 a1 =
-1.0 a2 = -0.0
a3 = 1.0
b0 = 1.0 b1 = 1.79 b2 = 2.22 b3 = 5.27E-5
c0 = 1.0 c1 = 3.59 c2 = 8.68
b0 = 1.0 b1 = 1.79 b2 = 2.22 b3 = 5.27E-5
c0 = 1.0 c1 = 3.59 c2 = 8.68
p4
= 1.7963219
so one
of the root of the given equation is 1.796.
|
7.
|
Find
the root of x4 - x - 4 = 0
|
8.
|
Find the root of 2x3 - 3x2 +
2x - 3 = 0
|
9.
|
Find the root of x3- 5x2 + 4x
- 3 = 0
|
10.
|
Find the root of x3 - x2 - x +
1 = 0
|
11.
|
Find the root of 9x4 + 30x3 +
34x2 + 30x + 25 = 0
|
12.
|
Find the root of x5 - 2x4+4x3-x2-7x+5= 0
|
No hay comentarios:
Publicar un comentario