viernes, 6 de abril de 2018

Birge-Vieta Method and Problems Roots polynomials

https://mat.iitm.ac.in/home/sryedida/public_html/caimna/transcendental/polynomial%20methods/bv%20method.html


Birge-Vieta Method
This is an iterative method to find a real root of the nth degree polynomial equation f(x) = Pn(x) = 0 of the form 

axn + an-1 xn-1 + .  .  . + ax + a0 = 0
The theory can be understood better if we consider the above nth degree polynomial in the form

xn + axn-1 + axn-2 + .  .  . + an-1x + an = 0
If s is a real root of Pn(x) = 0 then Pn(x) = (x-s)Qn-1(x) where Qn-1(x) is an (n-1)th degree polynomial of the form

Qn-1(x) = xn-1 + bxn-2 +  .  .  . + bn-2x + bn-1.
If p is any approximation to s then Pn(x) = (x-p)Qn-1(x) + R where R is the residue which depends on p.
Now starting with p, we can use some iterative method to improve the value of p such that 
R(p) = 0.
If we apply the Newton-Raphson method with a starting value p0, the iterative scheme can be written as

 
pi+1= pi -  Pn(pi)

                     i = 0,1,2...
 P'(pi)
Now by comparing the coefficients of  Pn and (x-p)Qn-1(x) + R we get
a1=b1 - pÞb1=a1 + p
a2=b2 - pb1Þb2=a2 + pb1
.
.
.
.
.
.
.
.
.
.
.
.
ai=b- pbi-1Þbi=ai + pbk-1
.
.
.
.
.
.
.
.
.
.
.
.
an=R - pbn-1ÞR = bn=an + pbn-1
(or)
bi=ai + pbi-1i=1,2,...n
with b0=1 and R = bn=Pn(p)
To find P'n(p), let us differentiate the equation

   bi = ai + pbi-1
with respect to p

Þ                 db/ dp = bi-1 + p (dbi-1 / dp)
if we substitute (db/ dp) = ci-1  then

Þ            ci-1 = bi-1 + pci-2              (or)
                                      ci     = bi + pci-1            i=1, 2, . . ., n-1
Then the  cn-1 obtained from the last equation is nothing but 

ci-1 = db/ dp = dR / dp = P'n(p)
That is the Newton's method now can be written as
pi+1 = pi - bn / cn-1
On convergence this iterative process will give one root p of the polynomial equation Pn(x) = 0. Now the deflated polynomial equation Qn-1(x) = 0 can be used to find the other real roots. 
This method is often called as Birge-Vieta method.

 
Example :
Find the real root of  x3 - x2 - x + 1 = 0
In this problem the coefficients are a0 = 1, a1 = -1, a2 = -1, a3 = 1
Let the initial approximation to p be p0 = 0.5
a0
a1
a2
a3
p0 = 5
+1
-1
-1
+1
+0.5
-0.25
-0.625

+1
-0.5
-1.25
+0.375
(b4 = R) 
+0.5
  0
-0.625

+1
  0
-1.25
 (c2 = R')

  
  
 
p1 = p0 - b4 / c3 = 0.5 - 0.375  = 0.5 + 0.375  = 0.5 + 0.3 = 0.8
-1.25 1.25

  
  
 
a0
a1
a2
a3
p1 = 0.8
+1
-1
-1
+1
+0.8
-0.16
-0.928

+1
-0.2
-1.16
+0.072
(b4 = R)
+0.8
+0.48

+1
+0.6
-0.68
(c2 = R')

  
 
p = 0.8 - 0.072 = 0.8 + 0.072  = 0.8 + 0.1059 = 0.9059
-0.68 0.68

  
 
a0
a1
a2
a3
p2 = 0.9059
+1
-1
-1
+1
+0.9059
-0.0852
-0.9831

+1
-0.0941
-1.0852
+0.0169
(b4 = R)
+0.9059
+0.7354

+1
+0.8118
-0.3498
(c2 = R')

  
 
p3 = 0.905 - 0.0169 = 0.905 + 0.0169  = 0.905 + 0.0483 = 0.9533
-0.3498 0.3498
The exact root is 1.0
Worked out problems
  Find a root and the corrponding polynomial factor for the following polynomial equations
 Exapmple 1  x4 - 3x3 + 3x- 3x + 2 = 0 Solution
 Exapmple 2 x4-x-10 = 0 Solution
 Exapmple 3 x- 6x2  + 11x  - 6 = 0 Solution
 Exapmple 4 x- 4x+ 5x - 2 = 0 Solution
 Exapmple 5 x- x+ 3x+ x - 4 = 0 Solution
 Exapmple 6 x- x - 4 = 0 Solution
Problems to workout

No hay comentarios:

Publicar un comentario