jueves, 24 de mayo de 2012

Inversion de giro control de velocidad Puente H con MOSFET para motores CC


http://www.neoteo.com/puente-h-con-mosfet-para-motores-cc

Puente H con MOSFET para motores CC

Hacer girar los motores impulsores de mecanismos como robots, máquinas herramientas (CNC) o cualquier otro sistema electromecánico que requiera de movimiento de piezas puede pensarse como una de las fases sencillas del desarrollo. El conocido y famoso “puente H” o “H bridge” siempre es la solución en sistemas donde el sentido de giro es una necesidad de operación. Sin embargo, el mundo real y físico nos presenta incontables dificultades a la hora de operar el puente H. Comenzando por la inercia del sistema mecánico, pasando por la velocidad de respuesta y terminando en el proceso de frenado y detención apropiados, encontramos la mayoría de los inconvenientes que han hecho abandonar a muchos entusiastas que se inician en el mundo de la robótica y la mecatrónica. Veamos juntos un poco de teoría y práctica de este dispositivo que moverá los motores en nuestros futuros montajes.

  • También conocido como “puente completo”, adopta la letra H para su nombre debido a la forma que presenta dentro de un circuito esquemático simplificado, como el que vemos debajo. En la barra central se encuentra ubicado el motor y en cada “rama lateral” ascendente o descendente se ubican los conmutadores que, activados de manera apropiada, brindarán al sistema los movimientos necesarios para que el motor utilizado pueda girar en un sentido u otro. Por supuesto que una letra H del alfabeto no se escribe con las partes superior e inferior unidas, pero en líneas generales, la adopción de esta letra para invocar a este tipo de montaje y conexión es la más apropiada.
    La letra H queda formada por la ubicación de los conmutadores en el circuito La letra H queda formada por la ubicación de los conmutadores en el circuito
    En los circuitos que vemos de manera habitual en la Web, encontramos que los elementos que se utilizan para conmutar la alimentación (y, de este modo, elegir el sentido de giro) poseen un nombre muy específico, a pesar de que cada desarrollador puede adoptar el que más práctico le resulte. Por ejemplo, “lado superior izquierdo” y “lado superior derecho” para las conexiones que nos unen al positivo de la alimentación, siendo por el otro conjunto, “lado inferior izquierdo” y “lado inferior derecho”. Algunos se acostumbran mejor a los nombres en inglés y sus siglas, por ejemplo, High Side Left (HSL) y High Side Right (HSR), por mencionar como ejemplos las ramas altas de la H. De todos modos, más allá de cómo se denominen, lo importante es que existen cuatro interruptores que se deben manejar en forma apropiada para lograr los objetivos que el proyecto exige.
    De acuerdo al apropiado manejo de las llaves conmutadoras, obtendremos todos los movimientos sobre el motor De acuerdo al apropiado manejo de las llaves conmutadoras, obtendremos todos los movimientos sobre el motor
    Para conectar el motor y hacerlo girar debemos activar las llaves de conmutación por pares opuestos en lo que respecta a lados y a posición (superior o inferior). Un error en la activación que permita la conexión de elementos superiores e inferiores de un mismo lado provocará una descarga muy rápida y abrupta de la batería que se esté utilizando o, en el peor de los escenarios, destruirá los elementos que forman las llaves conmutadoras. Como vemos en la imagen superior, para un giro seguro en uno de los dos sentidos, debemos cerrar SW1 y SW4, observando que SW2 y SW3 permanezcan abiertas (líneas rojas). En el caso inverso sería SW2 y SW3 cerradas, mientras que SW1 y SW4 deberán permanecer abiertas (líneas azules).

    Reemplazando las llaves por transistores MOSFET
    En la actualidad, para operar motores de CC permitiendo un funcionamiento de giro en ambos sentidos se utilizan, en la mayoría de los casos, circuitos con transistores MOSFET en lugar de las llaves genéricas SW1 a SW4 mencionadas con anterioridad. Algunos diseñadores prefieren utilizar transistores de canal P para los lados superiores y de canal N para los inferiores. La ventaja de este concepto de diseño es que las tensiones necesarias para activar los Gates de los transistores de canal P se podrán sacar directamente de la alimentación utilizada para el motor. Si por el contrario utilizamos transistores de Canal N en el lado superior de la H, la tensión necesaria para activar los Gates deberá provenir de un elevador de tensión que funcione por encima del valor nominal de alimentación del motor. Observemos la siguiente imagen para comprender este concepto:
    Los interruptores reemplazados por transistores MOSFET dentro del puente H y la circulación de corriente para lograr los dos sentidos de giro. Los interruptores reemplazados por transistores MOSFET dentro del puente H y la circulación de corriente para lograr los dos sentidos de giro.
    Para obtener un sentido de giro determinado (cualquiera), tal como habíamos analizado en los ejemplos iniciales, los transistores MOSFET IRFZ44N mostrados en imagen deberán comportarse como verdaderas llaves conmutadoras. Tal como se desprende de la hoja de datos del transistor empleado, para que este tipo de transistor MOSFET de canal N conduzca a pleno, ofreciendo la menor resistencia entre Drain y Source, la tensión de Gate respecto a Source deberá ser más positiva y el orden de los 2 a 4 Volts. Si asumimos que el transistor Q1 (en un sentido de giro) y Q3 (en el otro sentido de giro) ofrecen la mínima resistencia, el potencial de 12 Volts que alimenta los Drains respectivos pasará (según el giro seleccionado) hacia el motor, tal como muestra la figura superior.

    Pero volviendo sobre la teoría, para que en el Source existan los 12Volts, en el Gate debemos aplicar una tensión entre los 14 y los 16 Volts, es decir, 2 a 4 Volts por sobre el Source. De lo contrario, la tensión necesaria para activar el transistor a la máxima conducción se descontará de la tensión de alimentación y al motor le llegarán 10 Volts o menos. De este modo, tendremos una máxima circulación de corriente a través de Drain – Source para hacer girar el motor al máximo, con una diferencia de potencial de 2 Volts o más entre estos dos terminales del transistor. Esto equivale, según la fórmula de potencia, que 2 Volts multiplicados por la máxima corriente del motor será una potencia que disipará en forma de calor en el transistor. Cuanto mayor sea la corriente para hacer funcionar el motor, mayor será el calor generado por los transistores, ergo, mayor será el tamaño de los disipadores. Esto, por supuesto, hablará muy mal del diseñador del circuito quien nunca comprenderá por qué calientan tanto los transistores de las ramas superiores.
    Cálculo de los componentes asociados al MC34063A para obtener la tensión de los Gates Cálculo de los componentes asociados al MC34063A para obtener la tensión de los Gates
    Como dijimos al principio, muchos diseñadores prefieren evitar estos inconvenientes utilizando transistores de canal P en las ramas superiores del puente H, pero ocurre que estos dispositivos son más caros y difíciles de conseguir que los de canal N. En estos casos, se recurre a trabajar la sección excitadora de los transistores de las ramas superiores con tensiones mayores a la tensión de alimentación del motor. ¿Cómo logramos esto? ¡Máxime aún si sólo disponemos de una batería de 12 Volts que se encargará de brindar la energía para nuestro robot! Muy sencillo, el MC34063A viene a nuestro rescate una vez más, entregando una tensión de 14 a 16 Volts (a partir de 12 Volts de entrada) mediante una configuración Step-Up. Con una muy sencilla y pequeña placa, obtendremos la tensión necesaria para activar de manera correcta los Gates de los MOSFET asegurando un funcionamiento pleno de los transistores con máxima potencia entregada al motor y menor disipación de calor en los encapsulados de los transistores.
    Vista superior de la placa elevadora de tensión Con el MC34063A Vista superior de la placa elevadora de tensión Con el MC34063A
    Para una aplicación donde se utilice un único puente H, puede parecer un trabajo extra que no justifique la diferencia de costos respecto a la utilización de transistores de canal P. Sin embargo, por pequeña que pensemos una aplicación, siempre será necesario más de un sistema impulsor, sea en un vehículo, una grúa, una CNC, un brazo robótico o cualquier otro desarrollo mecánico motorizado. Por lo tanto, si se involucran muchos dispositivos de este estilo, el ahorro se hará muy evidente, sobre todo cuando se realicen construcciones seriales.
    El MC34063A muestra una vez más su versatilidad dentro de nuestros desarrollos El MC34063A muestra una vez más su versatilidad dentro de nuestros desarrollos
    Ciclos de funcionamiento y ciclos de frenado
    En el siguiente gráfico vemos de manera muy clara cuál es el circuito que seguirá la corriente para los casos (seleccionados al azar) de giro en avance - forward (arriba a la izquierda) y de retroceso – backward (abajo a la izquierda). Podemos apreciar con claridad cómo el motor asume una polaridad en un sentido de funcionamiento y cómo cambia el sentido de giro al invertir la conexión de positivo y negativo según la manera en que se activen los transistores indicados en color azul para cada caso correspondiente. Los potenciales de operación se indican con la sigla “Vo” y adquieren una determinada polaridad de acuerdo a, como mencionamos antes, la activación oportuna de los transistores indicados en color azul.
    En azul los transistores activados y en líneas punteadas el recorrido de la corriente durante las distintas instancias de funcionamiento En azul los transistores activados y en líneas punteadas el recorrido de la corriente durante las distintas instancias de funcionamiento
    En los motores de CC de imán permanente, como los que empleamos en este artículo, al interrumpir el suministro de energía, continúan girando de acuerdo a la inercia de los mecanismos que puedan tener acoplados a su eje. Es decir, si un motor posee un gran volante en su terminación mecánica, puede resultar que, al interrumpir la tensión de funcionamiento, la inercia del volante procure hacer girar el eje del motor muchas vueltas más y esto ocasione un movimiento indeseado de un determinado mecanismo. Por ejemplo, cuando se traslada una grúa puente a lo largo de una nave (galpón) y de repente se le interrumpe el suministro eléctrico o si se le corta la alimentación a los motores, la enorme inercia de tan extraordinaria estructura provocará que siga corriendo hasta el final del trayecto golpeando contra los parachoques de los extremos del recorrido. Quizás en su libre derrotero logre aminorar un poco la marcha gracias al rozamiento, pero sin un freno, aplicado de manera apropiada y a tiempo, el golpe puede ser muy duro al final del recorrido. En esta aplicación en particular (una grúa industrial) se utilizan motores AC, pero la comparación vale el ejemplo para demostrar la necesidad de un freno operativo en cualquier sistema mecánico lanzado en velocidad.
    Una grúa puente es uno de los tantos ejemplos de necesidad de un freno eléctrico Una grúa puente es uno de los tantos ejemplos de necesidad de un freno eléctrico
    La forma de frenar un motor eléctrico lanzado en velocidad es provocando un cortocircuito o un puente eléctrico entre sus extremos de conexión. Al girar el eje mecánico de un motor de imán permanente se induce en sus bornes de conexión una fuerza electromotriz que depende de los parámetros constructivos del motor y de la velocidad que alcance el giro propuesto exteriormente. Es decir, el motor pasa a funcionar como generador eléctrico. Esta Vfem (tal como se indica en el diagrama anterior) puede ser anulada y/o bloqueada en forma controlada por los transistores de la ramas inferiores del puente H. Es decir, el frenado puede ser dominado a voluntad si se aplica una señal PWM variable a los transistores encargados de controlar el frenado. Por el contrario, si la activación de los transistores es fija y directa, el frenado será aplicado en toda su capacidad. En estas circunstancias, los transistores realizan el trabajo duro de absorber la potencia que generan los motores durante el proceso de frenado y deben ser capaces de asimilarlo y disipar sin problemas el calor generado por esta energía.

    Frenado regenerativo
    Una forma útil e inteligente de aplicar un freno dentro de un puente H es lo que se conoce como frenado regenerativo. En lugar de provocar un puente eléctrico entre los bornes del motor, utilizando los transistores de las ramas inferiores del puente H, se aplica una técnica que permite utilizar la energía generada (Vfem) por el motor, en el momento en que ya no se desea seguir impulsando el sistema y se busca detener la marcha. Entonces, la energía que de otro modo se disiparía en los transistores en forma de calor puede utilizarse para recargar la batería durante el proceso de frenado. Cuando la tensión generada por el motor supera al voltaje de la batería en más de 1,4 Volts, se producirá una circulación de corriente que servirá para cargar la batería durante la operación del sistema.
    El frenado regenerativo se aprovecha para recargar las baterías (Clic en la imagen para ampliar) El frenado regenerativo se aprovecha para recargar las baterías (Clic en la imagen para ampliar)
    La tensión de 1,4 Volts está justificada en que debe vencer la tensión de juntura de cada uno de los diodos que intervienen en el circuito. Por supuesto que este fenómeno dura un breve lapso de tiempo debido a que la propia circulación de corriente provoca un frenado inicial al motor, perdiendo velocidad y en consecuencia capacidad de generar energía. Luego, cuando ya no entregue una Vfem suficiente como para cargar la batería, se procede a efectuar un frenado tradicional, como vimos en el párrafo anterior, es decir, activando los transistores de las ramas inferiores del puente H. De este modo, podemos deducir que el frenado regenerativo no es tan eficaz desde el punto de vista mecánico, pero sí tiene una gran importancia desde el punto de vista eléctrico y funcional del sistema.

    Una recuperación de tan sólo el 1% de la energía de un sistema de baterías correspondientes a un coche eléctrico puede significar un incremento importante en la autonomía final del vehículo. Mucho más relevante se vuelve aún un sistema de frenado regenerativo cuando se trabaja con vehículos impulsados por baterías que son cargadas con paneles de energía solar. Para completar un diseño de alta performance, se podrían colocar optoacopladores en paralelo a los diodos encargados de hacer circular la energía de regeneración y detectar los momentos exactos en que dejan de conducir para dar paso al frenado convencional de manera inmediata. Los diodos de los optoacopladores dejarían de conducir al mismo instante y de este modo le indicarían al sistema de control que ya no hay recarga de batería por frenado que proceda a completar el frenado por activación de transistores.
    El frenado regenerativo es una de las claves para extender la autonomía en los coches electricos El frenado regenerativo es una de las claves para extender la autonomía en los coches electricos
    En la próxima entrega, veremos toda esta teoría transformada en realidad, controlando con un microcontrolador un puente H compuesto por cuatro transistores IRFZ44N que movilizarán un motor CC en ambos sentidos. También experimentaremos las técnicas de frenado que hemos visto en este artículo. Por supuesto que intentaremos ver los modos de controlar la velocidad de trabajo y el frenado del sistema mediante el uso del PWM. ¡No te pierdas la mejor parte!
 

No hay comentarios:

Publicar un comentario