Hessenberg Matrix and Factorization
xample 1. Find the upper-Hessenberg form for the real symmetric matrix
![[Graphics:Images/HessenbergMod_gr_39.gif]](http://mathfaculty.fullerton.edu/mathews/n2003/hessenberg/HessenbergMod/Images/HessenbergMod_gr_39.gif)
Solution 1.
Make the first Mathematica subroutine Hessenberg1 active, then obtain the answer.
![[Graphics:../Images/HessenbergMod_gr_41.gif]](http://mathfaculty.fullerton.edu/mathews/n2003/hessenberg/HessenbergMod/Images/HessenbergMod_gr_41.gif)
Hessenberg Matrix and Factorization
Background
If A is symmetric then Householder's method can be used to reduce it to a similar symmetric tridiagonal matrix. If A is nonsymmetric then Householder's method can be used to reduce it to a similar Hessenberg matrix. These are the preliminary steps that are made before applying the QR method for finding eigenvalues of
![[Graphics:Images/HessenbergMod_gr_1.gif]](http://mathfaculty.fullerton.edu/mathews/n2003/hessenberg/HessenbergMod/Images/HessenbergMod_gr_1.gif)
Definition (Hessenberg Matrix)
An
![[Graphics:Images/HessenbergMod_gr_2.gif]](http://mathfaculty.fullerton.edu/mathews/n2003/hessenberg/HessenbergMod/Images/HessenbergMod_gr_2.gif)
![[Graphics:Images/HessenbergMod_gr_3.gif]](http://mathfaculty.fullerton.edu/mathews/n2003/hessenberg/HessenbergMod/Images/HessenbergMod_gr_3.gif)
![[Graphics:Images/HessenbergMod_gr_4.gif]](http://mathfaculty.fullerton.edu/mathews/n2003/hessenberg/HessenbergMod/Images/HessenbergMod_gr_4.gif)
![[Graphics:Images/HessenbergMod_gr_5.gif]](http://mathfaculty.fullerton.edu/mathews/n2003/hessenberg/HessenbergMod/Images/HessenbergMod_gr_5.gif)
Definition (Unitary Matrix)
(i) For real matrices, a unitary matrix is a matrix
![[Graphics:Images/HessenbergMod_gr_6.gif]](http://mathfaculty.fullerton.edu/mathews/n2003/hessenberg/HessenbergMod/Images/HessenbergMod_gr_6.gif)
![[Graphics:Images/HessenbergMod_gr_7.gif]](http://mathfaculty.fullerton.edu/mathews/n2003/hessenberg/HessenbergMod/Images/HessenbergMod_gr_7.gif)
(ii) For complex matrices, a unitary matrix is a matrix
![[Graphics:Images/HessenbergMod_gr_8.gif]](http://mathfaculty.fullerton.edu/mathews/n2003/hessenberg/HessenbergMod/Images/HessenbergMod_gr_8.gif)
![[Graphics:Images/HessenbergMod_gr_9.gif]](http://mathfaculty.fullerton.edu/mathews/n2003/hessenberg/HessenbergMod/Images/HessenbergMod_gr_9.gif)
Theorem (Hessenberg Factorization of a Matrix) There are two cases to consider.
(iii) Given a real matrix
![[Graphics:Images/HessenbergMod_gr_10.gif]](http://mathfaculty.fullerton.edu/mathews/n2003/hessenberg/HessenbergMod/Images/HessenbergMod_gr_10.gif)
![[Graphics:Images/HessenbergMod_gr_11.gif]](http://mathfaculty.fullerton.edu/mathews/n2003/hessenberg/HessenbergMod/Images/HessenbergMod_gr_11.gif)
![[Graphics:Images/HessenbergMod_gr_12.gif]](http://mathfaculty.fullerton.edu/mathews/n2003/hessenberg/HessenbergMod/Images/HessenbergMod_gr_12.gif)
![[Graphics:Images/HessenbergMod_gr_13.gif]](http://mathfaculty.fullerton.edu/mathews/n2003/hessenberg/HessenbergMod/Images/HessenbergMod_gr_13.gif)
(iv) Given a complex matrix
![[Graphics:Images/HessenbergMod_gr_14.gif]](http://mathfaculty.fullerton.edu/mathews/n2003/hessenberg/HessenbergMod/Images/HessenbergMod_gr_14.gif)
![[Graphics:Images/HessenbergMod_gr_15.gif]](http://mathfaculty.fullerton.edu/mathews/n2003/hessenberg/HessenbergMod/Images/HessenbergMod_gr_15.gif)
![[Graphics:Images/HessenbergMod_gr_16.gif]](http://mathfaculty.fullerton.edu/mathews/n2003/hessenberg/HessenbergMod/Images/HessenbergMod_gr_16.gif)
![[Graphics:Images/HessenbergMod_gr_17.gif]](http://mathfaculty.fullerton.edu/mathews/n2003/hessenberg/HessenbergMod/Images/HessenbergMod_gr_17.gif)
Proof Hessenberg Factorization
Theorem (Hessenberg Factorization of a Symmetric Matrix) Given a real symmetric matrix
![[Graphics:Images/HessenbergMod_gr_18.gif]](http://mathfaculty.fullerton.edu/mathews/n2003/hessenberg/HessenbergMod/Images/HessenbergMod_gr_18.gif)
![[Graphics:Images/HessenbergMod_gr_19.gif]](http://mathfaculty.fullerton.edu/mathews/n2003/hessenberg/HessenbergMod/Images/HessenbergMod_gr_19.gif)
![[Graphics:Images/HessenbergMod_gr_20.gif]](http://mathfaculty.fullerton.edu/mathews/n2003/hessenberg/HessenbergMod/Images/HessenbergMod_gr_20.gif)
![[Graphics:Images/HessenbergMod_gr_21.gif]](http://mathfaculty.fullerton.edu/mathews/n2003/hessenberg/HessenbergMod/Images/HessenbergMod_gr_21.gif)
Remark. This is the case that is easiest to illustrate in a first course in numerical methods.
Proof Hessenberg Factorization
Theorem If
![[Graphics:Images/HessenbergMod_gr_22.gif]](http://mathfaculty.fullerton.edu/mathews/n2003/hessenberg/HessenbergMod/Images/HessenbergMod_gr_22.gif)
![[Graphics:Images/HessenbergMod_gr_23.gif]](http://mathfaculty.fullerton.edu/mathews/n2003/hessenberg/HessenbergMod/Images/HessenbergMod_gr_23.gif)
![[Graphics:Images/HessenbergMod_gr_24.gif]](http://mathfaculty.fullerton.edu/mathews/n2003/hessenberg/HessenbergMod/Images/HessenbergMod_gr_24.gif)
![[Graphics:Images/HessenbergMod_gr_25.gif]](http://mathfaculty.fullerton.edu/mathews/n2003/hessenberg/HessenbergMod/Images/HessenbergMod_gr_25.gif)
![[Graphics:Images/HessenbergMod_gr_26.gif]](http://mathfaculty.fullerton.edu/mathews/n2003/hessenberg/HessenbergMod/Images/HessenbergMod_gr_26.gif)
Remark. The eigenvectors of
![[Graphics:Images/HessenbergMod_gr_27.gif]](http://mathfaculty.fullerton.edu/mathews/n2003/hessenberg/HessenbergMod/Images/HessenbergMod_gr_27.gif)
![[Graphics:Images/HessenbergMod_gr_28.gif]](http://mathfaculty.fullerton.edu/mathews/n2003/hessenberg/HessenbergMod/Images/HessenbergMod_gr_28.gif)
Proof Hessenberg Factorization
Computer Programs Hessenberg Factorization
Program (Householder Reduction to Upper-Hessenberg Form). To reduce the
![[Graphics:Images/HessenbergMod_gr_29.gif]](http://mathfaculty.fullerton.edu/mathews/n2003/hessenberg/HessenbergMod/Images/HessenbergMod_gr_29.gif)
![[Graphics:Images/HessenbergMod_gr_30.gif]](http://mathfaculty.fullerton.edu/mathews/n2003/hessenberg/HessenbergMod/Images/HessenbergMod_gr_30.gif)
![[Graphics:Images/HessenbergMod_gr_31.gif]](http://mathfaculty.fullerton.edu/mathews/n2003/hessenberg/HessenbergMod/Images/HessenbergMod_gr_31.gif)
Disclaimer. The following subroutine is for pedagogical purposes only, it may not work for all cases.
![[Graphics:Images/HessenbergMod_gr_32.gif]](http://mathfaculty.fullerton.edu/mathews/n2003/hessenberg/HessenbergMod/Images/HessenbergMod_gr_32.gif)
Program (Householder
Reduction to Upper-Hessenberg Form). To reduce
the ![[Graphics:Images/HessenbergMod_gr_33.gif]](http://mathfaculty.fullerton.edu/mathews/n2003/hessenberg/HessenbergMod/Images/HessenbergMod_gr_33.gif)
![[Graphics:Images/HessenbergMod_gr_34.gif]](http://mathfaculty.fullerton.edu/mathews/n2003/hessenberg/HessenbergMod/Images/HessenbergMod_gr_34.gif)
![[Graphics:Images/HessenbergMod_gr_35.gif]](http://mathfaculty.fullerton.edu/mathews/n2003/hessenberg/HessenbergMod/Images/HessenbergMod_gr_35.gif)
Disclaimer. The following subroutine is for pedagogical purposes only, it may not work for all cases.
![[Graphics:Images/HessenbergMod_gr_36.gif]](http://mathfaculty.fullerton.edu/mathews/n2003/hessenberg/HessenbergMod/Images/HessenbergMod_gr_36.gif)
Caveat. The above
subroutines will not reduce
an ![[Graphics:Images/HessenbergMod_gr_37.gif]](http://mathfaculty.fullerton.edu/mathews/n2003/hessenberg/HessenbergMod/Images/HessenbergMod_gr_37.gif)
![[Graphics:Images/HessenbergMod_gr_38.gif]](http://mathfaculty.fullerton.edu/mathews/n2003/hessenberg/HessenbergMod/Images/HessenbergMod_gr_38.gif)
Example 1. Find the upper-Hessenberg form for the real symmetric matrix
![[Graphics:Images/HessenbergMod_gr_39.gif]](http://mathfaculty.fullerton.edu/mathews/n2003/hessenberg/HessenbergMod/Images/HessenbergMod_gr_39.gif)
Solution 1.
Example 2. Find the upper-Hessenberg form for the real symmetric matrix
![[Graphics:Images/HessenbergMod_gr_49.gif]](http://mathfaculty.fullerton.edu/mathews/n2003/hessenberg/HessenbergMod/Images/HessenbergMod_gr_49.gif)
Use Mathematica's built in subroutine HessenbergDecomposition.
Solution 2.
Example 3. Find the upper-Hessenberg form for the real symmetric matrix
![[Graphics:Images/HessenbergMod_gr_55.gif]](http://mathfaculty.fullerton.edu/mathews/n2003/hessenberg/HessenbergMod/Images/HessenbergMod_gr_55.gif)
Solution 3.
Example 4. Find the upper-Hessenberg form
![[Graphics:Images/HessenbergMod_gr_78.gif]](http://mathfaculty.fullerton.edu/mathews/n2003/hessenberg/HessenbergMod/Images/HessenbergMod_gr_78.gif)
![[Graphics:Images/HessenbergMod_gr_79.gif]](http://mathfaculty.fullerton.edu/mathews/n2003/hessenberg/HessenbergMod/Images/HessenbergMod_gr_79.gif)
Solution 4.
Example 5. Find the upper-Hessenberg form
![[Graphics:Images/HessenbergMod_gr_90.gif]](http://mathfaculty.fullerton.edu/mathews/n2003/hessenberg/HessenbergMod/Images/HessenbergMod_gr_90.gif)
![[Graphics:Images/HessenbergMod_gr_91.gif]](http://mathfaculty.fullerton.edu/mathews/n2003/hessenberg/HessenbergMod/Images/HessenbergMod_gr_91.gif)
Solution 5.
Example 6. Find the upper-Hessenberg form
![[Graphics:Images/HessenbergMod_gr_102.gif]](http://mathfaculty.fullerton.edu/mathews/n2003/hessenberg/HessenbergMod/Images/HessenbergMod_gr_102.gif)
![[Graphics:Images/HessenbergMod_gr_103.gif]](http://mathfaculty.fullerton.edu/mathews/n2003/hessenberg/HessenbergMod/Images/HessenbergMod_gr_103.gif)
Solution 6.
Example 7. Find the upper-Hessenberg form
![[Graphics:Images/HessenbergMod_gr_129.gif]](http://mathfaculty.fullerton.edu/mathews/n2003/hessenberg/HessenbergMod/Images/HessenbergMod_gr_129.gif)
![[Graphics:Images/HessenbergMod_gr_130.gif]](http://mathfaculty.fullerton.edu/mathews/n2003/hessenberg/HessenbergMod/Images/HessenbergMod_gr_130.gif)
Solution 7.
Example 8. Find the upper-Hessenberg form
![[Graphics:Images/HessenbergMod_gr_141.gif]](http://mathfaculty.fullerton.edu/mathews/n2003/hessenberg/HessenbergMod/Images/HessenbergMod_gr_141.gif)
![[Graphics:Images/HessenbergMod_gr_142.gif]](http://mathfaculty.fullerton.edu/mathews/n2003/hessenberg/HessenbergMod/Images/HessenbergMod_gr_142.gif)
Solution 8.
Exercise 9. Find the upper-Hessenberg form
![[Graphics:Images/HessenbergMod_gr_153.gif]](http://mathfaculty.fullerton.edu/mathews/n2003/hessenberg/HessenbergMod/Images/HessenbergMod_gr_153.gif)
![[Graphics:Images/HessenbergMod_gr_154.gif]](http://mathfaculty.fullerton.edu/mathews/n2003/hessenberg/HessenbergMod/Images/HessenbergMod_gr_154.gif)
Solution 9.
Research Experience for Undergraduates
Hessenberg Factorization Internet hyperlinks to web sites and a bibliography of articles.
Download this Mathematica Notebook Hessenberg Factorization
No hay comentarios:
Publicar un comentario